A simple method for solving matrix eigenvalue and eigenvector 求矩陣的特征值與特征向量的一種簡捷方法
Exact solution of eigenvalue and eigenvector derivatives and its application in structural dynamics 結(jié)構(gòu)動(dòng)力學(xué)中具有重特征值的靈敏度分析
In addition , the backward error for eigenvalue and eigenvector are analyzed respectively 此外還單獨(dú)考慮了對特征值和對特征向量的結(jié)構(gòu)向后誤差和向后誤差。
Initial vector and iterating control in the solution to eigenvalue and eigenvector of a matrix by the matrix iterarion method 乘冪法求矩陣特征向量與特征值的初始向量及循環(huán)控制
Improve the traditional method of solving algebraic eigenvalue and eigenvector , give a new method of solving algebraic eigenvalue and eigenvector with elementary transformation 摘要改進(jìn)了求代數(shù)特征值與特征向量的傳統(tǒng)方法,給出了一種用初等變換來求代數(shù)特征值與特征向量的方法。
In this paper , through treating lines reciprocal transformation to a matrix , cogradiently reach the eigenvalue and eigenvector of a matrix , to solve the question treat a eigenvalue under without parameters , and given some advanced theorems 摘要通過對矩陣進(jìn)行行列互逆變換,同步求出矩陣特征值及特征向量,解決了不帶參數(shù)求特征值問題,并給出一些新定理。